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Abstract. We have investigated the evolution of the electronic properties of the t-t’-U Hubbard model with
hole doping and temperature. Due to the shape of the Fermi surface, scattering from short wavelength
spin fluctuations leads to strongly anisotropic quasi–particle scattering rates at low temperatures near half–
filling. As a consequence, significant variations with momenta near the Fermi surface emerge for the spectral
functions and the corresponding ARPES signals. At low doping the inverse lifetime of quasiparticles on the
Fermi surface is of order kBT varying linearly in temperature from energies of order t down to a very low
energy scale set by the spin fluctuation frequency while at intermediate doping a sub-linear T -dependence
is observed. This behavior is possibly relevant for the interpretation of photoemission spectra in cuprate
superconductors at different hole doping levels.

PACS. 74.72.-h High-Tc compounds – 75.50.Ee Antiferromagnetics – 79.60.-i Photoemission
and photoelectron spectra

1 Introduction

A key issue in the efforts to understand the microscopic
physics of high–Tc superconductors is the evolution of the
electronic properties with doping. In recent years theoreti-
cal work has continuously benefited from angular resolved
photoemission spectroscopy (ARPES) data for the elec-
tronic spectrum and the Fermi surface (FS) in the nor-
mal state as well as for the anisotropic energy gap in
the superconducting state [1]. In particular, remarkable
ARPES results for the underdoped cuprates have shown
an anisotropic normal–state pseudogap which forms below
∼ 150 K for the weakly underdoped materials increasing
up to ∼ 300 K for the heavily underdoped compounds
with a Tc close to zero [2–5]. Even for optimally doped
Bi 2212 samples pseudogap formation has been reported
near the (π, 0) point of the Brillouin zone (BZ) [6]. Con-
trary to overdoped samples the quasi–particle (qp) peak in
the underdoped spectra is found to be very weak near the
(π, 0) point of the BZ and no FS crossing is observed on
the BZ boundary along the (π, 0) to (π, π) direction which
has been considered as evidence for the destruction of the
FS [7]. Very recent high resolution ARPES studies have
also convincingly demonstrated the previously anticipated
linear temperature dependence of the inverse lifetime of
the excitations along the BZ diagonal [8].

Furthermore, the spin susceptibility [9], c–axis opti-
cal [10] as well as in–plane infrared conductivity [11],
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NMR relaxation rates [12], and inelastic neutron scat-
tering data [13] indicate a pseudogap in the low–energy
excitation spectrum of underdoped compounds. Different
scenarios like pair formation well above Tc [14,15], spin–
charge separation [16,17] or precursor effects near the anti-
ferromagnetic (AF) instability [18,19] have been proposed
as possible origins of these pseudogap phenomena.

Some of the observed features like the appearance of
anomalously flat bands near the Fermi energy [20] have
been previously discussed in the context of the t-J model
Hamiltonian. The necessity to include longer range hop-
ping processes was recognized in direct comparisons of
ARPES dispersions and t-J model spectra [21,22]. E.g. a
next–nearest neighbor hopping amplitude was found cru-
cial to obtain a weak qp weight near the (π, 0) point of
the BZ [23,24].

In this paper, we explore the combined effects of strong
spin fluctuation scattering and FS topology using the 2D
Hubbard model on a square lattice with a t− t′ dispersion
of the one-particle kinetic energy

εk = −2t(coskx + cos ky)− 4t′ cos kx cos ky (1)

with nearest–neighbor (t) and next–nearest neighbor (t′)
hopping amplitudes. Near half–filling we demonstrate that
strong qp scattering rates develop with decreasing tem-
perature near the so called “hot spots” on the FS, i.e.
FS points which are connected by the AF wave vectors
Q = (±π,±π). As a consequence of the emerging highly
anisotropic scattering rates the qp peaks in the spectral
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functions near the (π, 0) points of the BZ are suppressed
in comparison to the momenta near kF along the BZ di-
agonal leading to highly anisotropic ARPES signals. In
this regime the imaginary part of the on-shell self-energy
is of order kBT and is varying linearly with temperature
down to the very low energy scale set by the spin fluctu-
ation frequency. Simultaneously, a pseudogap develops in
the density of states (DOS) whose width is controlled by
the magnitude of t′.

2 FLEX approximation

Our method of choice to evaluate the renormalized one-
particle excitations is the self–consistent and conserving
[25] fluctuation–exchange (FLEX) approximation [26]. In
this approach the self–energy is given in terms of the
spin– and density–fluctuation T–matrices Tsf(r, τ) and
Tρρ(r, τ) by

Σ(r, τ) = U2G(r, τ)[χ0(r, τ) + Tρρ(r, τ) + Tsf(r, τ)] (2)

where χ0(r, τ) = −G(r, τ)G(−r,−τ) is the particle–hole
bubble and r and τ denote the real space coordinate and
imaginary time, respectively. U is the on–site Coulomb
repulsion. The Fourier transformed T -matrices are

Tρρ(q, iωm) = −1
2

Uχ2
0(q, iωm)

1 + Uχ0(q, iωm)
(3)

Tsf(q, iωm) =
3
2

Uχ2
0(q, iωm)

1− Uχ0(q, iωm)
(4)

where ωm = 2mπT are the bosonic Matsubara frequencies
at temperature T . In combination with Dyson’s equation
G−1 = G−1

0 − Σ, equations (1, 2), and (3) form a self–
consistent set of equations which we solve numerically by
iteration. This numerical solution is based on a completely
algebraic treatment using repeated application of interme-
diate Fast–Fourier–transforms [27]. Stability of the self–
consistent cycle is achieved by solving the FLEX equa-
tions on a contour in the complex frequency plane shifted
off the real axis by a finite amount iγ with 0 < γ < πT/2
[29]. Analytic continuation to the real frequency axis does
not encounter the usual problems of purely imaginary fre-
quency methods [27].

We have solved the FLEX equations on lattices with up
to 128×128 sites using an equally spaced frequency mesh
of 4096 points within an energy window of [−30t, 30t]. The
lower bound on the temperature accessible in our present
calculations is T ∼ 0.02t. This bound is set by the small-
est width in frequency space of the AF paramagnon–peak
in Im Tsf(q, ω + iγ) which can be resolved for the chosen
frequency mesh and the smallest momentum space width
which can be treated without introducing finite size ef-
fects. Throughout the paper we will adopt an interaction
strength U = 4t and t′ = −0.3t – a parameter set for which
the model exhibits long range AF order in the ground state
at half–filling [28].
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Fig. 1. Im Σ(kF, ω = 0) along the Fermi line for various tem-
peratures T with U = 4t, t′ =−0.3t and hole doping δ= 2.5%.
The inset shows schematically the Fermi line (long dashed line)
in one quarter of the BZ and the “hot spots” are indicated by
arrows.

3 Scattering rates and spectral functions

We start with the discussion of our results by considering
the FS anisotropy of the one-particle scattering rate for
small hole concentrations. Its momentum dependence is
governed by two effects: First, the available recoil phase–
space which is linked to the momentum–space width of the
AF paramagnon peak in Im Tsf(q, ω) and second the den-
sity of intermediate states. While the former quantity ex-
hibits a variation with temperature and doping which dis-
criminates only weakly between the t– and the t–t′ model
in the low doping limit, the latter quantity depends cru-
cially on the t–t′ band structure. This is a major source
of difference between the one-particle renormalizations in
the t– and t–t′ Hubbard models. In particular, we observe
a non–trivial temperature and momentum dependence of
the self–energy. This is shown in Figure 1 which depicts
the imaginary part of Σ(k, ω = 0) along the FS line, i.e.
at k = kF. For T ≥ 0.08t the AF peak in Im Tsf(q, ω) is a
broad structure; its HWFMs in momentum and frequency
space are ∼ π/6 and ∼ 0.2t, respectively. Therefore, in
essence, Σ(kF, ω = 0) is modulated only by the density of
states along the FS which is largest at the borders of the
BZ and smallest at the point kFγ on the BZ diagonal, i.e.
where kFx = kFy. For decreasing temperatures the peak
in Im Tsf(q, ω) at q = Q sharpens until we loose its accu-
rate resolution at about T ≈ 0.02t. This redistribution of
weight shifts the maximum in Im Σ(kF, ω = 0) into the
so–called “hot spots” on the FS which can be connected
by the AF wave vectors. In addition to this shift the low–
temperature anisotropy of the self–energy is enhanced by
roughly a factor of two.
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Fig. 2. Im G(k, ω) along three different paths in the BZ –
schematically shown in the insets – for T = 0.03t, U = 4t,
t′ = −0.3t and δ = 2.5% on a 64×64 lattice. The path γ in
(a) is chosen along the BZ diagonal from kγ = (11, 11) π32 to
(17, 17) π32 . In (b) the path α is parallel to the path in (a) but
runs from kα = (21, 0) π32 to (32, 11) π32 crossing the hot spot at
kFα ≈ (26, 5) π

32
. The path β in (c) is along the BZ boundary

from kβ = (32, 0) π
32

to (32, 11) π
32

.

In Figure 2 we show the consequence of the anisotropic
scattering rates for the single–particle spectral function
Im G(k, ω) at T = 0.03t. Choosing a path in momen-
tum space as shown in Figure 2a which crosses the FS at
kFγ , i.e. the wave vector of the minimal scattering rate,
a sharp qp peak is observed. In contrast, the qp feature
appears severely weakened in Figure 2b where the FS is
traversed by passing through a hot spot. In comparison
to Figure 2a the amplitude of the qp peak near kF is
reduced by almost a factor of three and, moreover, it is
minimal on the FS. Choosing a path which cuts the FS
on the BZ boundary as in Figure 2c, the qp structure is
asymmetrically distributed as a function of momentum
and more pronounced in the inverse photoemission sec-
tor. Only weak dispersion of the qp peak below the Fermi
energy along this cut signals a “flat–band” region close
to the momentum (π, 0). We note that ARPES spectra
can be obtained from Figures 2a–2c by multiplying Im
G(k, ω) with the Fermi function. It is only near momen-
tum kFγ where these spectra display sharp qp peaks while
the weight of the qp in the vicinity of the hot spots and
the BZ boundary is substantially reduced.

Figure 3 summarizes the temperature dependence of
the imaginary part of the on–shell (ω = 0) self–energy
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Fig. 3. Temperature dependence of Im Σ(kF, ω = 0) for two
momenta on the Fermi line (kFβ at the border of the BZ, and
kFγ along the diagonal; U = 4t, and t′ = −0.3t). The inset
displays the temperature dependence of the spin fluctuation
energy ωsf . Filled symbols/solid lines show the results for δ =
2.5%, open symbols/dashed lines for δ = 15%.

at the FS for two doping concentrations δ = 15% and
2.5% for momenta on the BZ boundary and the BZ di-
agonal, i.e., kFβ and kFγ , respectively. The inset shows
the temperature dependence of the spin fluctuation fre-
quency ωsf(T ) for both doping concentrations. We define
ωsf(T ) by the frequency of the maximum in Im Tsf(q, ω)
at q = Q. Figure 3 suggests the existence of a very small
energy scale which is manifest in the self–energy at low
doping. At δ = 15% Im Σ(kf , ω = 0, T ) clearly extrapo-
lates to zero for vanishing temperatures at both FS mo-
menta. This is consistent with Fermi–liquid theory (FLQ).
However, at δ = 2.5% a similar behavior is not found. In
order to preserve low–temperature FLQ behavior we are
forced to assume that Im Σ(kf , ω = 0, T ) will approach
zero below a very low characteristic temperature TFLQ(δ).
Since ωsf(T ) is the only low–energy scale available which
remains finite in the limit T → 0 for any δ > 0, it is natu-
ral to assume that TFLQ(δ) ∼ ωsf(TFLQ(δ)). As is obvious
from the inset of Figure 3b this temperature is very low for
δ = 2.5% and remains inaccessible within the numerical
accuracy of our present computational scheme. However,
renormalization group techniques applied the FLEX equa-
tions at very low temperatures of order kBT ∼ 10−4t have
confirmed the persistence of FLQ behavior [30] and are
consistent with our data and conclusions.

Figure 4 shows the density of states in the vicinity of
the Fermi energy at T = 0.03t. At this temperature a
pseudogap has clearly opened. However, by increasing the
magnitude of the next–nearest neighbor hopping ampli-
tude t′ the nesting phase-space is reduced and the pseu-
dogap is diminished and eventually disappears. Yet, in the
latter case, we find a pseudogap to persist in parts of the
BZ, i.e. near the (π, 0) point. This partial pseudogap for-
mation was also pointed out in references [31,32].
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Fig. 4. Density of states in the vicinity of the Fermi energy.
Results are shown for T = 0.03t, U = 4t, and doping δ = 5%
and various values of t′ as indicated in the figure.
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Fig. 5. Density-plot of the spectral function along the path
(π, 12π
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) → (π, 0) → ( 20π
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, 0) in the BZ. The parameters are

T = 0.03t, t′ = −0.3t, δ = 2.5%, U = 4t.

Figure 5, shows a contour–plot of the dispersion of
the one-particle spectral function in a parameter range
of relatively strong spin fluctuation scattering. Focusing
on the low–energy sector in the vicinity the Fermi level
it is evident that the dispersion of the dominant spectral
peak is consistent with the notion of a large FS. However,
upon crossing the FS the spectral weight of this peak is re-
duced – as can be seen in the vicinity of the point (π, 0) –
and the remaining spectral weight is shifted off into AFM
precursor bands which extend over some region of the

BZ. These results are reminiscent of similar findings in
references [31,33] although less pronounced.

4 Summary

In conclusion we have studied the effects of strong spin–
fluctuation scattering and the FS shape on the evolution of
anisotropic electronic properties of the 2D U -t-t′ Hubbard
model. With decreasing hole doping a linear temperature
dependence of the qp scattering-rate develops in addition
to low-temperature FS-hot-spots. This is consistent with
several aspects of the ARPES signals in the underdoped
cuprates. No signature of a FS collapse is found within
FLEX at low doping, where however a pseudogap and
AFM precursor band develop.
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